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Abstract

The aerosol time-of-flight mass spectrometry (ATOFMS) has not generally been used to provide a quantitative estimation of chemical
compositions of ambient aerosols. In an initial study, the possibility of developing a calibration model to predict chemical compositions from
ATOFMS data was demonstrated, but because of the limited number of samples (only 12), the ability of the calibration model was not fully
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ealized. In this study, 50 samples were created to further test the prediction ability of the calibration model. The conceptual frame
elate the mass concentrations of the particles in the identified classes to the average aerosol compositions for each sampling time i
calibration model based on ART-2a and multivariate analysis. There may be some non-linearity between cluster mass concen

mbient species concentrations because of measurement errors, the scaling equations used to estimate particle mass and variou
equired for building the model. Thus, in this study, PLS regression was integrated with radial basis functions (RBF-PLS) to ob
rediction effects and compared to partial least square (PLS) regression alone. Compared with an earlier study, these results provi
more convincing demonstration of the ability of the calibration model to estimate the chemical compositions from ATOFMS data. T
lso suggest that the model would be able to provide carbon data and thus substitute for thermal optical reflectance (TOR) me
dditionally, the calibration model based on RBF-PLS showed more accurate predictions in the cases with some non-linearity. S
ey steps in the modeling effect are also discussed in detail.
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. Introduction

Ambient aerosols have been proved to have adverse
ffects on environment quality and human health[1,2].
otor vehicle exhaust, road dust, industrial emissions,
iogenic emissions and other pollution sources make the
xposure to ambient aerosols unavoidable. New techniques
nd data analysis tools have been applied to study ambient
articles[3,4]. First developed in 1994, the aerosol time-
f-flight mass spectrometry (ATOFMS) measures the size
nd composition of individual aerosol particles in real time
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[5]. This technique provides information to understand
size and composition distribution of atmospheric parti
[3,6,7]. However, it is extremely difficult for ATOFMS t
provide a quantitative estimation of the species bulk m
concentrations of particles. Bulk chemical compositions
very helpful for studying the relationship between amb
aerosols and human diseases and for designing pol
control strategies. Solving this estimation problem
make the use of the ATOFMS more advantageous, ex
the application fields of ATOFMS (an sufficiently accur
ATOFMS calibration model can reduce the experim
work needed to measure chemical species concentrat
and enhance the substantial investment in developing
important aerosol monitoring instrument.

003-2670/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Fergenson et al.[8] initially studied the development of
a calibration model to estimate the ambient aerosol chemi-
cal composition from ATOFMS data. However, because of
the limited samples for that research (only 12 samples), the
ability of the multivariate calibration model to predict bulk
chemical compositions was not sufficiently demonstrated.
Thus, the goals of the present study are: (1) to fully prove
the feasibility and effect of the multivariate calibration model
based on adaptive resonance theory (ART) neural networks
and partial least square regression (PLSR) on estimating bulk
aerosol chemical compositions from ATOFMS data, (2) to
discuss the influences of the non-linearity caused by measure-
ment errors (of both ATOFMS and species concentrations),
the employed experiential equations and various assumptions
on the accuracy of the calibration model[9] and (3) accord-
ingly to provide a method with better prediction effect on the
cases with some non-linearity.

2. Method description

The whole data analysis process consisted of two major
parts. First, the individual particles were clustered based on
their individual mass spectrum and the mass concentration
of the particles in each cluster was estimated. Then, the
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2. Contrast enhancement: transfer all elements ofpi through
a non-linear transfer function.

qij =
{

pij, if pij > θ

0, otherwise
(2)

whereθ is a threshold value for discriminating against
noise[13]. Signals smaller than the threshold are set to 0.
Generally,θ is set to a value between 0 and 1/

√
d, where

ddenotes sample dimensions[13]. In this study, the range
of mass-to-charge (m/z) of the spectral sample is [−350,
+350], sod equals 700. Finally,θ was set to 0.005, since
it provided a reliable clustering result for the calibration
model.

3. Rescaleqi to unit vectorr i .
4. Compare the resonances between the input vector and the

cluster vectors of all existingl output neurons and deter-
mine the neuron with the largest resonance as “winner”.
The resonance is represented as the dot product of the
input vector and the existing cluster vector.

ρk = r iwk(k = 1, 2, . . . , l) and ρwin = max(ρk) (3)

5. If the resonance of the winner neuron is larger than the pre-
defined vigilance limitρvig (in this study,ρvig was 0.6),
modify the cluster vector of the winner neuron toward the
input vector according to the following procedure (equa-
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redict bulk aerosol compositions with the multivariate c
ration model. The conventional methods for these two
ave been described in detail elsewhere[8,10] and only a
rief introduction to them are presented in the subseq
ections.

.1. Description of ART-2a

Various cluster analysis methods, typically ART-2a, h
een applied for the on-line particle composition analy
here are a number of reports involving the use of ART

or the classification of single particle mass spectrometry
10,11]. In the classification of ATOFMS data, the inputs
RT-2a are the positive and negative ion mass spectra

or each particle and the output is the index of the class
article belongs to. Compared with most clustering meth

he significant advantage of ART-2a is the ability to add a
luster without disturbing any existing clusters, and thu
as the potential to be used for on-line data analyses.

Suppose the sample set to be clustered is denote
xi |i = 1, . . ., n}, wherexi is the sample vector andn is the
umber of samples. The training algorithm for ART-2a
riefly described below. The details are provided in lit

ures[12,13].

. Randomly select an input vector and scale it into
length.

pi = xi

||xi|| (1)
tions(4)–(7)). Vigilance is a key parameter to control
cluster number. The larger the vigilance, the more
classes. An over-large vigilance would result in an “o
fine” clustering result (the extreme case is one cluste
one sample), while an over-small vigilance would re
in an “over-coarse” result. There is no generalized ru
determine vigilance value. In this study,ρvig was set to
0.6, since it provided a feasible clustering solution for
calibration model.

vij =
{
r ij, if wold

(win)ij > θ

0, otherwise
(4)

whereθ is as the same as defined in equation(2).

i = vi

||vi|| (5)

i = wold
win + η(ui − wold

win) (6)

new
win = ti

||ti|| (7)

hereη is learning rate. In general,η should be smaller tha
.5 (in this study it was 0.1). Otherwise, create a new clu
s below.

new = r i (8)

Repeat the above steps for all the input vectors, whic
efined as a cycle. In ideal cases, the criterion for stoppin

raining of ART-2a is when the change between the clu
ectors of two consecutive cycles is zero or smaller tha
re-defined criterion value. However, in ATOFMS stud
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it is almost impossible to reach the above ideal criteria, so
in this study the criterion was to set a pre-defined number
of cycles. The initial cluster vectors were randomly selected
from the clustering sample set and scaled. The clustering
results were used to estimate the mass concentrations of the
particle classes in each time interval. The detailed process
will be explained in the following sections.

2.2. Description of PLSR

PLS regression is a generalization of multiple linear
regression (MLR)[14]. The significant advantage of PLSR
over traditional MLR is that PLSR can analyze strongly
collinear and noisy data, and also simultaneously model a
number of response/dependent variables[14,15]. In general,
a linear regression model can be written as

Y = XB + E (9)

whereX andY are independent and dependent variables,
respectively,B contains the regression coefficients andE is
the residual matrix. In PLSR,X can be transformed to

X = TCT (10)

whereT is the matrix of PLS components andC is the loading
matrix. LetΛ = CTB, then the PLS regression model can be
w
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the local optima of the radial basis vectors obtained through a
K-means algorithm). The integration of RBF and PLS extend
the application of PLS to non-linear problems[19,20]. A typ-
ical radial basis function is:

aij = exp

(
−(||xi − cj||2)

σ2
j

)
(12)

wherexi is the input vector,cj the radial basis vector,σ j the
radial basis width andaij is the output of radial basisj on
input vectori. In the RBF-PLS approach, each input sample
(cluster mass concentration vector in this study) is a radial
basis vector. Suppose there aren samples, thus one will have
ann×n transitional matrix according to equation(12).

A =




a11 . . . a1n

...
...

...

an1 · · · ann


 (13)

Then, PLS is applied to build a relation between the transi-
tional matrixA and outputs (species concentrations in this
study). The details of this process can be found in Walczak
and Massart[19] and Zhao et al.[20].

3. Data treatment and analysis
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t can be seen that the regression ofX againstY is turned into
he regression of PLS components T againstY. The detailed
rocess can be found in Hoskuldsson[16]. In this study,X
ndY denote the mass concentrations of all particle cla
nd the bulk species concentrations in each sampling

nterval, respectively. Thus, a ATOFMS calibration mode
vailable. However, the calibration model could be affe
y various types of errors, such as measurement erro
stimate of particle density and the experimentally meas

nlet efficiency. These errors could render the relation
etween the mass concentrations of clusters and the
nt species concentrations non-linear. Thus, the next se

ntroduces a novel method to solve the possible non-line
roblems in the calibration model.

.3. Description of RBF-PLS

One effective method to solve non-linear problems
onvert them into linear problems. As a kernel function, ra
asis function (RBF) can transfer the input space to a
itional linear space. Thus, linear methods can be appli
uild the relationship between the transitional space and
ut space. This process is the principle of conventional r
asis function networks (RBFN)[17,18]. The advantages

ntegrating RBF with PLS over conventional RBFN are
ake full use of the information of all the samples an

olve the problems of determining the radial bases (su
In this study, the ATOFMS data were collected in Fres
A. The sampling period was from December 1, 200
ebruary 3, 2001. Both the positive ions and the neg

ons were provided in the ATOFMS data, so the rang
ass-to-charge (m/z) for this study was set to [−350, +350]
he input to the ART-2a analysis was a 700 variable

or. The bulk aerosol species concentrations were mea
s part of the California Regional Particulate Air Qu

ty Study [21]. The California Regional PM10/PM2.5 Air
uality Study is a comprehensive public/private sector

aborative program with two main goals: (1) to provide
mproved understanding of particulate matter and visib
n central California and (2) to provide decision-makers w
he tools needed to identify equitable and efficient con
ethods. The species concentration data of PM2.5 for the
resno site were collected from December 15, 2000 to F
ry 3, 2001. Only on 11 days (December 15, 16, 17,
6, 27 and 28, January 31 and February 1, 2 and 3)
oth ATOFMS data and species concentration data a
ble. The species concentrations for each day were coll

n five time intervals 0:00–5:00, 5:00–10:00, 10:00–13
3:00–16:00 and 16:00–24:00 h. Thus, the number of p
le time periods for the calibration model was 11× 5 = 55.
he total number of measured particles in these 55 pe
as 230,432.
It was a problem to cluster such a large number of p

les with ART-2a networks. In Fergenson et al.[8], a tota
f 12,479 particle samples were grouped into 12 coh
hich finally generated 12 samples for the calibration mo
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Each cohort was classified individually by ART-2a but the
weight matrix (cluster vectors) was preserved from one anal-
ysis to the next. Any particles that did not fit into the existing
classes nucleated their own classes. The feature of ART-2a
that ART-2a can create new classes without disturbing the
existing classes permits this procedure to function, but in
terms of system completeness, it would be better to cluster
the samples at the same time. In this study, 230,432 particles
were clustered at the same time. The vigilance factor for this
study was 0.6. Initially, a total of 1339 classes were created.
However, most of the 1339 classes contained very few par-
ticles. Twenty-eight classes accounting for 80% of the total
particle mass were retained for further analysis. The selected
classes were the top 28 in terms of particle mass and each of
the rest classes accounted for less than 1% of total particle
mass.

The cluster results provided the number of the particles
in each class in each time interval. ATOFMS provides the
aerodynamic diameter of each particle that can then be used
to estimate the physical diameter, so the particle mass con-

F
(

centrations of the identified classes in each time interval can
be estimated. The ATOFMS instruments do not detect par-
ticles of all aerodynamic diameters equally. Larger particles
are detected with a higher efficiency than smaller particles,
so a scaling equation was applied to relate the particle detec-
tion efficiency to the aerodynamic diameter of a particle[8].
The detection efficiency as a function of particle size can be
expressed as

N = αDβ
a (14)

whereN is the number of particles in a given volume of
air per particle observed by ATOFMS in that volume,Da
the aerodynamic diameter in micrometer of the particle and
α andβ are the coefficients that were determined through
calibration experiments. In this study, the coefficients were
set to be 1383.12 and−4.312, respectively. The density
of each spherical particle was assumed to be 1.3 g cm−3

[8]. For further details on the data pre-treatment process,
see Fergenson et al.[8]. In addition, in order to ensure
the statistical reliability of the clustering results of 55 time
periods, the periods that contained less than 1000 particles
were excluded from analysis. Thus, 50 time periods were
retained for final analysis, i.e., 50 mass concentration vec-
tors (28 dimensions) were available to build a calibration
model.

hose
m ore
t from
ig. 1. Flowchart of the data pre-treatment process for the calibration model
C, cluster; M, mass concentration of cluster; S, species concentration).
In the species concentration data, the species w
issing or below detection limit measurements were m

han one third of the total measurements were excluded
Fig. 2. PRESS vs. PLS component number.
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analysis. Finally, 33 species (1: Cl−, 2: NO3
−, 3: SO4

2−, 4:
NH4

+, 5: Na+, 6: K+, 7: OC1 (OC: organic carbon), 8: OC2, 9:
OC3, 10: OC4, 11: OC (total organic carbon), 12: EC1 (EC:
element carbon), 13: EC2, 14: EC (total element carbon), 15:
TC (total carbon), 16: Na, 17: Mg, 18: Al, 19: Si, 20: S, 21:
Cl, 22: K, 23: Ca, 24: Mn, 25: Fe, 26: Ni, 27: Cu, 38: Zn, 29:
As, 30: Se, 31: Br, 32: Rb and 33: Pb) each of which had 50
measurements were retained to build the calibration model.
The ions were measured by ion chromatography (IC). The
carbon fractions (OCs and ECs) were measured by quartz
filters and thermal optical reflectance (TOR). This protocol
volatilizes organic carbon (OC) in four temperature steps in
a helium atmosphere: OC1 at 120◦C, OC2 at 250◦C, OC3 at
450◦C and OC4 at 550◦C. OC4 responses return to constant
values. Pyrolyzed organic carbon (OP) is oxidized at 550◦C
in a mixture of 2% oxygen and 98% helium atmosphere until

the return of filter’s reflectance to its initial value. Then, three
elemental carbon fractions are measured in an oxidizing
atmosphere: EC1 at 550◦C, EC2 at 700◦C and EC3 at
850◦C [22]. All the other species were measured by X-ray
fluorescence spectroscopy (XRF). Thus, both independent
and dependent variables for the calibration model were
available. The whole pre-treatment process is summarized in
Fig. 1.

In order to test the predicting ability of the calibration
model, 20 samples were randomly selected from the 50 sam-
ples to build the model and the other 30 samples were for
testing. This random selection was performed three times.
The corresponding training/testing sample sets were called
groups 1–3, respectively. In the 50 calibration samples, 11
samples did not contain any missing and below detection
limit values in the species concentration data (they were
Fig. 3. Comparison between the predicted and measured spec
ies concentrations of six normal testing samples in group 1 (PLS).
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called “normal samples” and were collected during 0:00–5:00
and 5:00–10:00 h on 12/15/00, 0:00–5:00 h on 12/18/00,
16:00–24:00 h on 12/28/00, 0:00–5:00 and 16:00–24:00 h
on 2/1/01, 0:00–5:00 and 10:00–13:00 h on 2/2/01 and
0:00–5:00, 5:00–10:00 and 16:00–24:00 h on 2/3/01, respec-
tively). The discussion will be focused on the normal sam-
ples. Groups 1–3 contained six to eight normal test samples,
respectively. In addition, the independent and dependent vari-
ables were scaled and centered.

4. Results and discussion

In PLS modeling, the determination of the number of PLS
components is one of the critical problems. The predictive
error of sum of squares (PRESS) was used as the criterion

for determining the PLS component number.

PRESS=
30∑
i=1

33∑
j=1

(yij − ỹij)
2 (15)

whereyij is the concentration of speciesj in testing samplei
and is the estimation of ˜yij. Different number of PLS compo-
nents produced different PRESS values as shown inFig. 2.
First, the PRESS decreased and then stayed relatively flat,
but finally increased with increasing PLS component num-
bers. This rise occurs because additional noise was being
included in the model as extra PLS components were added
into model. This behavior is called “over-fitting” that creates
well-fit models with poor or no predictive ability. Thus, the
proper PLS component number should lie in the relatively flat
range. In this study, in addition to the PRESS, the prediction
Fig. 4. Comparison between the predicted and measured specie
s concentrations of six normal testing samples in group 1 (RBF-PLS).
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Table 1
The correlation coefficients of the predicted and measured concentrations of
all the species in the normal testing samples

R2 (PLS) R2 (RBF-PLS)

Group 1 (33× 6 pairs) 0.91 0.91
Group 2 (33× 7 pairs) 0.95 0.95
Group 3 (33× 8 pairs) 0.93 0.94

errors exclusively of the thermal carbon fractions were also
given particular concerns (the reason for the concerns will
be explained later), so in order to get a “dual win” solution
that makes the prediction errors for carbon fractions as small
as possible without significantly changing or increasing the
PRESS (the error for the whole system), the PLS component
numbers for the three groups were set to 2, 5 and 5, respec-
tively.

In the RBF-PLS model, in addition to the PLS component
number, the width for radial basis function is an important
parameter. As a Gaussian kernel function, the radial basis
function controls its response region through its width. Too
small a width could result in an overly sharp response such
that there is almost no response outside a narrow range. Alter-
natively, too large a width could make the radial basis function
yield the same response for all of the input samples. Clearly,
both choices produce inappropriate models. In this study, the
width for each radial basis was set as the same value 22.

One criterion for testing the prediction ability is the cor-
relation coefficientR2 between the predicted and measured
values.Table 1shows theR2 values of the predicted and

measured concentrations of all the species in the normal test-
ing samples of each group. The numbers of the data pairs
for calculatingR2 of groups 1–3 were 33× 6, 33× 7 and
33× 8, respectively. Clearly, each group of this study has a
better calibration effect than the initial study[8] where theR2

value was 0.83. In addition, the RBF-PLS approach provided
somewhat better results than PLS alone.

As an illustrative example,Figs. 3 and 4show the pre-
dicted species concentrations (of PLS model and RBF-PLS
model, respectively) and the measured ones of six normal
testing samples in group 1. It can be seen that almost every
black circle (measured) is covered by or overlaps with the
white circle (predicted). Like the results of the initial study
[8], this study also showed that the predictions of the higher
concentration species were better than the low concentration
variables. One possible reason was that the high concentra-
tion species exert greater influence on the ART-2a analysis,
ensuring that the identified classes depend more heavily on
their concentrations[8]. Fig. 5shows the relative prediction
errors of two methods for the thermal carbon fractions of
six normal testing samples in group 1. The fact that PLS and
RBF-PLS show the similar prediction error variation patterns
for each species (i.e., when PLS yields a relatively large/small
error RBF-PLS also yields a relatively large/small one) sug-
gests the non-linearity in this calibration model is not too
high. The comparison in quantity of the prediction abilities
o

s of
t . The

F
ig. 5. Comparison between the prediction errors of PLS and RBF-PLS with
f two methods will be discussed in detail as below.
Table 2shows the mean values of the prediction error

he thermal carbon fractions in the normal test samples
respect to the thermal carbon fractions of six normal testing samples in group1.
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Table 2
Mean value of the relative prediction errors (in percentage) of each thermal
carbon fraction of each group (for normal testing samples)

Group 1 Group 2 Group 3

PLS RBF-PLS PLS RBF-PLS PLS RBF-PLS

OC1 28.8 27.4 32.1 37 41.6 43.3
OC2 20.5 20.2 16.3 13.7 32.2 27.2
OC3 19.6 21.1 21.3 18.3 36.4 34
OC4 20.7 22.9 17.1 18 20.7 22.2
OC 11.3 10.8 14.1 10 23.8 19.3
EC1 30.7 26.2 24.3 18.9 32.1 30.1
EC2 21 22.7 34.4 37.2 25.9 28
EC 18.7 16.5 25.4 21.8 31.8 31
TC 11.7 10.4 14 11.1 24.1 21.3
Ave alla 20.3 19.8 22.1 20.7 29.8 28.5
Ave 3b 14.2 14.1 16.5 13.1 28.1 24.9

a Ave all: the average over the mean relative prediction errors of all the
thermal carbon fractions.

b Ave 3: the average over the mean relative prediction errors of OC3, OC
and TC.

bolded values highlight those variables that are better fit by
the RBF-PLS as compared to the PLS model. The average
mean errors for all the carbon fractions and those for OC3,
OC and TC are also listed inTable 2. The carbon fractions
were selected as examples since they have relatively large
concentrations (especially, OC3, OC and TC) and they are the
very important species for air quality studies. For example,
they can assist in the identification/apportionment of gasoline
and diesel emissions[23,24]. It can be seen in the results
for both methods on sample groups1 and 2 that the average
mean error of the carbon fractions is approximately 20%,
and the average mean errors of OC3, OC and TC are∼15%.
The measurement uncertainties for the carbon fractions are
typically larger than 15%[25]. Thus, both PLS and RBF-PLS
showed good prediction capability for the carbon fractions.
The prediction errors of group 3 were somewhat larger than
for the other groups. One of the possible reasons could be
the samples selected for group 3 are not as similar to those
samples included in the calibration set as those in groups
1 and 2. The RBF-PLS shows better predictions than PLS
suggesting there is some non-linearity in this system. It also
shows the ability of RBF-PLS to deal with the non-linearity.

In this study, the width for each radial basis in RBF-PLS
approach was set to the same value. It is likely that RBF-
PLS could provide more accurate results if the radial basis
widths are set individually (i.e., each radial basis determines
i f its
s d to
o ese
i

5

test
t dict

the bulk aerosol chemical composition from ATOFMS single
particle data. Compared with the initial study that had only 12
calibration samples[8], this study showed a better calibration
model based on ART-2a and PLS/RBF-PLS. The comparison
between the predictions of the calibration models (PLS and
RBF-PLS) of the carbon fractions suggests the calibration
model could provide comparable data to the thermal optical
reflectance (TOR) measurements. In addition, the results of
this study suggest that RBF-PLS is a better choice for non-
linear calibration problems.
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