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Abstract

The aerosol time-of-flight mass spectrometry (ATOFMS) has not generally been used to provide a quantitative estimation of chemical
compositions of ambient aerosols. In an initial study, the possibility of developing a calibration model to predict chemical compositions from
ATOFMS data was demonstrated, but because of the limited number of samples (only 12), the ability of the calibration model was not fully
realized. In this study, 50 samples were created to further test the prediction ability of the calibration model. The conceptual framework is to
relate the mass concentrations of the particles in the identified classes to the average aerosol compositions for each sampling time interval using
a calibration model based on ART-2a and multivariate analysis. There may be some non-linearity between cluster mass concentrations and
ambient species concentrations because of measurement errors, the scaling equations used to estimate particle mass and various assumptic
required for building the model. Thus, in this study, PLS regression was integrated with radial basis functions (RBF-PLS) to obtain better
prediction effects and compared to partial least square (PLS) regression alone. Compared with an earlier study, these results provide better anc
a more convincing demonstration of the ability of the calibration model to estimate the chemical compositions from ATOFMS data. The results
also suggest that the model would be able to provide carbon data and thus substitute for thermal optical reflectance (TOR) measurements.
Additionally, the calibration model based on RBF-PLS showed more accurate predictions in the cases with some non-linearity. Some of the
key steps in the modeling effect are also discussed in detail.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction [5]. This technique provides information to understand the
size and composition distribution of atmospheric particles
Ambient aerosols have been proved to have adverse[3,6,7]. However, it is extremely difficult for ATOFMS to
effects on environment quality and human hedlth2]. provide a quantitative estimation of the species bulk mass
Motor vehicle exhaust, road dust, industrial emissions, concentrations of particles. Bulk chemical compositions are
biogenic emissions and other pollution sources make thevery helpful for studying the relationship between ambient
exposure to ambient aerosols unavoidable. New techniquesaerosols and human diseases and for designing pollution
and data analysis tools have been applied to study ambientontrol strategies. Solving this estimation problem will
particles[3,4]. First developed in 1994, the aerosol time- make the use of the ATOFMS more advantageous, extend
of-flight mass spectrometry (ATOFMS) measures the size the application fields of ATOFMS (an sufficiently accurate
and composition of individual aerosol particles in real time ATOFMS calibration model can reduce the experiment
work needed to measure chemical species concentrations),
* Corresponding author. Tel.: +1 315 268 3861; fax: +1 315 268 4410, and enhance the substantial investment in developing this
E-mail addresshopkepk@clarkson.edu (P.K. Hopke). important aerosol monitoring instrument.
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Fergenson et a[8] initially studied the development of 2. Contrast enhancement: transfer all elemengs tifrough
a calibration model to estimate the ambient aerosol chemi-  a non-linear transfer function.
cal composition from ATOFMS data. However, because of .
gii = {Pij, if pij >0
ij

the limited samples for that research (only 12 samples), the )
0, otherwise

ability of the multivariate calibration model to predict bulk

chemical compositions was not sufficiently demonstrated.
Thus, the goals of the present study are: (1) to fully prove
the feasibility and effect of the multivariate calibration model

based on adaptive resonance theory (ART) neural networks 4 janotes sample dimensigidg]. In this study, the range
and partial least square regression (PLSR) on estimating bulk mass-to-chargenf’z) of the spectral sample is-B50

aerosol chemical compositions from ATOFMS data, (2) to +350], sod equals 700. Finallyy was set to 0.005, since
discussthe influences ofthe non-linearity caused by measure- 1 ided a reliable clustering result for the calibration

ment errors (of both ATOFMS and species concentrations), model.
the employed experiential equations and various assumptions\a. Rescalej
on the accuracy of the calibration mod@] and (3) accord-
ingly to provide a method with better prediction effect on the
cases with some non-linearity.

(2)

whered is a threshold value for discriminating against
noise[13]. Signals smaller than the threshold are set to 0.
Generallyg is set to a value between 0 anghld, where

to unit vectorr;.

4. Compare the resonances between the input vector and the
cluster vectors of all existingoutput neurons and deter-
mine the neuron with the largest resonance as “winner”.
The resonance is represented as the dot product of the
input vector and the existing cluster vector.

2. Method description

ok =riwrtk=12,...,0) and pwin = maxx) (3)

The whole data analysis process consisted of two major5
parts. First, the individual particles were clustered based on
their individual mass spectrum and the mass concentration
of the particles in each cluster was estimated. Then, the
mass concentrations of the identified classes were used to
predict bulk aerosol compositions with the multivariate cali-
bration model. The conventional methods for these two parts
have been described in detail elsewhEd0] and only a
brief introduction to them are presented in the subsequent
sections.

Ifthe resonance of the winner neuron is larger than the pre-
defined vigilance limitpyig (in this study,ovig was 0.6),
modify the cluster vector of the winner neuron toward the
input vector according to the following procedure (equa-
tions(4)—(7). Vigilance is a key parameter to control the
cluster number. The larger the vigilance, the more the
classes. An over-large vigilance would result in an “over-
fine” clustering result (the extreme case is one cluster for
one sample), while an over-small vigilance would result
in an “over-coarse” result. There is no generalized rule to
determine vigilance value. In this study,g was set to
2.1. Description of ART-2a 0.6, since it provided a feasible clustering solution for the
calibration model.
Various cluster analysis methods, typically ART-2a, have it old
Vij = { o atrome )
0, otherwise

been applied for the on-line particle composition analysis.
There are a number of reports involving the use of ART-2a
for the classification of single particle mass spectrometry data

e : here6 i th defined i )
[10,11] In the classification of ATOFMS data, the inputs of whered is as the same as defined in equat@n

ART-2a are the positive and negative ion mass spectral dataul. _ Vi (5)
for each particle and the output is the index of the class each Vil

particle belongs to. Compared with most clustering methods, t—wold o (Ui — wold ©6)
the significant advantage of ART-2a is the ability to add anew win twin

cluster without disturbing any existing clusters, and thus, it new _ t; )
has the potential to be used for on-line data analyses. Wt

Suppose the sample.set to be clustered is Qenoted byWheren is learning rate. In generaj,should be smaller than
{xjli=1, ..., n}, wherex; is the sample vector amlis the

0.5 (in this study it was 0.1). Otherwise, create a new cluster
number of samples. The training algorithm for ART-2a is ( y )

briefly described below. The details are provided in litera- as below.
tures[12,13]} Whew = T (8)
1. Randomly select an input vector and scale it into unit ~Repeat the above steps for all the input vectors, which are
length. defined as acycle. Inideal cases, the criterion for stopping the
training of ART-2a is when the change between the cluster
p; Xi 1) vectors of two consecutive cycles is zero or smaller than the

Xl pre-defined criterion value. However, in ATOFMS studies,
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it is almost impossible to reach the above ideal criteria, so the local optima of the radial basis vectors obtained through a
in this study the criterion was to set a pre-defined number K-means algorithm). The integration of RBF and PLS extend
of cycles. The initial cluster vectors were randomly selected the application of PLS to non-linear problefi9,20] A typ-

from the clustering sample set and scaled. The clusteringical radial basis function is:

results were used to estimate the mass concentrations of the 5

particle classes in each time interval. The detailed processy,; — exp<_(||xi _20j|| )> (12)

will be explained in the following sections. o

wherex; is the input vectorg; the radial basis vectos; the
radial basis width andy is the output of radial basison
input vectori. In the RBF-PLS approach, each input sample
(cluster mass concentration vector in this study) is a radial
basis vector. Suppose there argamples, thus one will have
ann x n transitional matrix according to equati¢i?).

2.2. Description of PLSR

PLS regression is a generalization of multiple linear
regression (MLR)14]. The significant advantage of PLSR
over traditional MLR is that PLSR can analyze strongly
collinear and noisy data, and also simultaneously model a
number of response/dependent varialfl&s15]. In general,

a linear regression model can be written as

al ... aip

A=| @ . (13)
Y=XB+E 9)

apl -+ dpn
whereX andY are independent and dependent variables,
respectivelyB contains the regression coefficients &
the residual matrix. In PLSRX can be transformed to

Then, PLS is applied to build a relation between the transi-
tional matrix A and outputs (species concentrations in this
study). The details of this process can be found in Walczak
X=TCT (10) and Massarf19] and Zhao et al[20].

whereT is the matrix of PLS components a@ds the loading
matrix. LetA = C"B, then the PLS regression model can be 3. Data treatment and analysis
written as '

Y=TA+E (11) In this study, the ATOFMS data were collected in Fresno,
CA. The sampling period was from December 1, 2000 to
It can be seen that the regressioiXadgainsty is turned into February 3, 2001. Both the positive ions and the negative
the regression of PLS components T agaifist he detailed ions were provided in the ATOFMS data, so the range of
process can be found in Hoskuldsgadg]. In this study,X mass-to-chargen{/z) for this study was set to{350, +350].
andY denote the mass concentrations of all particle classesThe input to the ART-2a analysis was a 700 variable vec-
and the bulk species concentrations in each sampling timetor. The bulk aerosol species concentrations were measured
interval, respectively. Thus, a ATOFMS calibration model is as part of the California Regional Particulate Air Qual-
available. However, the calibration model could be affected ity Study [21]. The California Regional PM/PM, .5 Air
by various types of errors, such as measurement error, theQuality Study is a comprehensive public/private sector col-
estimate of particle density and the experimentally measured|aborative program with two main goals: (1) to provide an
inlet efficiency. These errors could render the relationship improved understanding of particulate matter and visibility
between the mass concentrations of clusters and the ambiin central California and (2) to provide decision-makers with
ent species concentrations non-linear. Thus, the next sectiornthe tools needed to identify equitable and efficient control
introduces a novel method to solve the possible non-linearity methods. The species concentration data of, Pbr the

problems in the calibration model. Fresno site were collected from December 15, 2000 to Febru-
ary 3, 2001. Only on 11 days (December 15, 16, 17, 18,
2.3. Description of RBF-PLS 26, 27 and 28, January 31 and February 1, 2 and 3) were

both ATOFMS data and species concentration data avail-

One effective method to solve non-linear problems is to able. The species concentrations for each day were collected
converttheminto linear problems. As a kernelfunction, radial in five time intervals 0:00-5:00, 5:00-10:00, 10:00-13:00,
basis function (RBF) can transfer the input space to a tran- 13:00-16:00 and 16:00-24:00 h. Thus, the number of possi-
sitional linear space. Thus, linear methods can be applied toble time periods for the calibration model wasx5 =55.
build the relationship between the transitional space and out-The total number of measured particles in these 55 periods
put space. This process is the principle of conventional radial was 230,432.
basis function networks (RBFN}17,18] The advantages of It was a problem to cluster such a large number of parti-
integrating RBF with PLS over conventional RBFN are to cles with ART-2a networks. In Fergenson et[&], a total
make full use of the information of all the samples and to of 12,479 particle samples were grouped into 12 cohorts,
solve the problems of determining the radial bases (such aswhich finally generated 12 samples for the calibration model.
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Each cohort was classified individually by ART-2a but the centrations of the identified classes in each time interval can
weight matrix (cluster vectors) was preserved from one anal- be estimated. The ATOFMS instruments do not detect par-
ysis to the next. Any particles that did not fit into the existing ticles of all aerodynamic diameters equally. Larger particles
classes nucleated their own classes. The feature of ART-2aare detected with a higher efficiency than smaller particles,
that ART-2a can create new classes without disturbing the so a scaling equation was applied to relate the particle detec-
existing classes permits this procedure to function, but in tion efficiency to the aerodynamic diameter of a partjéle
terms of system completeness, it would be better to cluster The detection efficiency as a function of particle size can be
the samples at the same time. In this study, 230,432 particlesexpressed as

were clustered at the same time. The vigilance factor for this
study was 0.6. Initially, a total of 1339 classes were created. N =
However, most .Of the 1339 classes (_:ontained very few Par \whereN is the number of particles in a given volume of
t|cle§. Twenty-eight clagses accounting for 8Q% of the total air per particle observed by ATOFMS in that voluniz,
particle mass were retamed for further a_naIyS|s. The selecte he aerodynamic diameter in micrometer of the particle and
classes were the top 28 in terms of particle mass and each Ok and 8 are the coefficients that were determined through
the rest classes accounted for less than 1% of total partICIecalibration experiments. In this study, the coefficients were

mass. set to be 1383.12 and4.312, respectively. The density

. Thehcltljster_resultf] grov@etd thel n:Tn;n)bFe“r/lgf the %art'ilﬁs of each spherical particle was assumed to be 1.3¢cm
n eadc ca_ssd|n ea(t: 'Te mhervat: le that ptrr(])VI ES € 8]. For further details on the data pre-treatment process,
aerodynamic diameter of €ach particie that can then be useg,, Fergenson et gB]. In addition, in order to ensure

to estimate the physical diameter, so the particle mass coNy,q giavistical reliability of the clustering results of 55 time

periods, the periods that contained less than 1000 particles
were excluded from analysis. Thus, 50 time periods were
retained for final analysis, i.e., 50 mass concentration vec-
tors (28 dimensions) were available to build a calibration
model.

In the species concentration data, the species whose
missing or below detection limit measurements were more
than one third of the total measurements were excluded from

aDf (14)

230,432 Particles

70

group 1
60

Remove the 5 time intervals with 501

less than 1000 particles and
calculate the mass concentrations

; - 40
of the top 28 clusters in each time 0 2 4 6 8 10
interval with the scaling function.

70

_______ M group 2
50,28 60-
[0}
(49}
i
2,28 o 504
40 T
RBF 0 2 4 6 8 10
60
group 3
50
40
0 2 4 6 8 10

Number of PLS components

Fig. 1. Flowchart of the data pre-treatment process for the calibration model )
(C, cluster; M, mass concentration of cluster; S, species concentration). Fig. 2. PRESS vs. PLS component number.
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analysis. Finally, 33 species (1: Gl2: NO;~, 3: SQi2, 4: the return of filter’s reflectance to its initial value. Then, three
NH4*, 5:Na', 6: K+, 7: OC1 (OC: organic carbon), 8: 0C2,9: elemental carbon fractions are measured in an oxidizing
OC3, 10: OC4, 11: OC (total organic carbon), 12: EC1 (EC: atmosphere: EC1 at 55€, EC2 at 700C and EC3 at
element carbon), 13: EC2, 14: EC (total element carbon), 15:850°C [22]. All the other species were measured by X-ray
TC (total carbon), 16: Na, 17: Mg, 18: Al, 19: Si, 20: S, 21: fluorescence spectroscopy (XRF). Thus, both independent
Cl, 22: K, 23: Ca, 24: Mn, 25: Fe, 26: Ni, 27: Cu, 38: Zn, 29: and dependent variables for the calibration model were
As, 30: Se, 31: Br, 32: Rb and 33: Pb) each of which had 50 available. The whole pre-treatment process is summarized in
measurements were retained to build the calibration model.Fig. 1

The ions were measured by ion chromatography (IC). The In order to test the predicting ability of the calibration
carbon fractions (OCs and ECs) were measured by quartzmodel, 20 samples were randomly selected from the 50 sam-
filters and thermal optical reflectance (TOR). This protocol Ples to build the model and the other 30 samples were for
volatilizes organic carbon (OC) in four temperature steps in testing. This random selection was performed three times.
a helium atmosphere: OC1 at 120, OC2 at 250C, OC3 at The corresponding training/testing sample sets were called
450°C and OC4 at 550C. OC4 responses return to constant groups 1-3, respectively. In the 50 calibration samples, 11
values. Pyrolyzed organic carbon (OP) is oxidized at®50  samples did not contain any missing and below detection
in a mixture of 2% oxygen and 98% helium atmosphere until limit values in the species concentration data (they were
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Fig. 3. Comparison between the predicted and measured species concentrations of six normal testing samples in group 1 (PLS).
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called “normal samples” and were collected during 0:00-5:00 for determining the PLS component number.
and 5:00-10:00h on 12/15/00, 0:00-5:00h on 12/18/00,

16:00-24:00h on 12/28/00, 0:00-5:00 and 16:00-24:00h SOEE -
on 2/1/01, 0:00-5:00 and 10:00-13:00h on 2/2/01 and PRESS=_ > (v — ) (15)
0:00-5:00, 5:00-10:00 and 16:00-24:00 h on 2/3/01, respec- i=1j=1

tively). The discussion will be focused on the normal sam-

. . i whereyjj is the concentration of specigs testing samplé
ples. Groups 1-3 contained six to eight normal test samples.,and is the estimation of " Different number of PLS compo-

;i?g:i\t/'giy;gfezdgf dn,ctehr:at;r:cei(;pendentand dependentvan-n?ms produced different PRESS values as shovﬁfig'_nz
' First, the PRESS decreased and then stayed relatively flat,
but finally increased with increasing PLS component num-
bers. This rise occurs because additional noise was being
4. Results and discussion included in the model as extra PLS components were added
into model. This behavior is called “over-fitting” that creates
In PLS modeling, the determination of the number of PLS well-fit models with poor or no predictive ability. Thus, the
components is one of the critical problems. The predictive proper PLS component number should lie in the relatively flat
error of sum of squares (PRESS) was used as the criterionrange. In this study, in addition to the PRESS, the prediction
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Table 1 measured concentrations of all the species in the normal test-
The correlation coefficients of the predicted and measured concentrations ofirlg samples of each group. The numbers of the data pairs
all the species in the normal testing samples for calculatingR? of groups 1-3 were 38 6, 33x 7 and

R (PLS) R (RBF-PLS) 33x 8, respectively. Clearly, each group of this study has a
Group 1 (33« 6 pairs) 0.91 0.91 better calibration effect than the initial stuf} where theR?
Group 2 (33« 7 pairs) 0.95 0.95 value was 0.83. In addition, the RBF-PLS approach provided
Group 3 (33x 8 pairs) 0.93 0.94

somewhat better results than PLS alone.

As an illustrative examplerigs. 3 and 4show the pre-
errors exclusively of the thermal carbon fractions were also dicted species concentrations (of PLS model and RBF-PLS
given particular concerns (the reason for the concerns will model, respectively) and the measured ones of six normal
be explained later), so in order to get a “dual win” solution testing samples in group 1. It can be seen that almost every
that makes the prediction errors for carbon fractions as smallblack circle (measured) is covered by or overlaps with the
as possible without significantly changing or increasing the white circle (predicted). Like the results of the initial study
PRESS (the error for the whole system), the PLS component[8], this study also showed that the predictions of the higher
numbers for the three groups were set to 2, 5 and 5, respecconcentration species were better than the low concentration
tively. variables. One possible reason was that the high concentra-

In the RBF-PLS model, in addition to the PLS component tion species exert greater influence on the ART-2a analysis,
number, the width for radial basis function is an important ensuring that the identified classes depend more heavily on
parameter. As a Gaussian kernel function, the radial basistheir concentrationfs]. Fig. 5shows the relative prediction
function controls its response region through its width. Too errors of two methods for the thermal carbon fractions of
small a width could result in an overly sharp response such Six normal testing samples in group 1. The fact that PLS and
that there is almost no response outside a narrow range. AlterRBF-PLS show the similar prediction error variation patterns
natively, too large a width could make the radial basis function foreach species (i.e., when PLSyields arelatively large/small
yield the same response for all of the input samples. Clearly, error RBF-PLS also yields a relatively large/small one) sug-
both choices produce inappropriate models. In this study, thegests the non-linearity in this calibration model is not too
width for each radial basis was set as the same value 22.  high. The comparison in quantity of the prediction abilities

One criterion for testing the prediction ability is the cor- 0f two methods will be discussed in detail as below.
relation coefficienR? between the predicted and measured ~ Table 2shows the mean values of the prediction errors of
values.Table 1shows theR? values of the predicted and the thermal carbon fractions in the normal test samples. The
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Fig. 5. Comparison between the prediction errors of PLS and RBF-PLS with respect to the thermal carbon fractions of six normal testing samples in group
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Table 2 the bulk aerosol chemical composition from ATOFMS single
Mean value of the relative prediction errors (in percentage) of each thermal particle data. Compared with the initial study that had only 12
carbon fraction of each group (for normal testing samples) calibration samplef8], this study showed a better calibration

Group 1 Group 2 Group 3 model based on ART-2a and PLS/RBF-PLS. The comparison
PLS RBF-PLS PLS RBF-PLS PLS RBF-PLS between the predictions of the calibration models (PLS and
oc1 288 274 321 37 416 433 RBF-PLS) of the carbon fractions suggests the calibration
0oC2 205 202 16.3 137 322 272 model could provide comparable data to the thermal optical
ocC3 196 211 21.3 183 36.4 34 reflectance (TOR) measurements. In addition, the results of
0c4 207 22.9 171 18 20.7 222 this study suggest that RBF-PLS is a better choice for non-
BRI NI, BRI inearcaibaton pobems
EC2 21 227 344 372 259 28
EC 187 165 254 218 31.8 31
TC 11.7 104 14 111 241 213
Aveal® 203 19.8 221 207 29.8 285 Acknowledgments
Aved 142 141 165 13.1 28.1 249
2 Ave_all: the average over the mean relative prediction errors of all the  This work was supported in part by the California Air
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b Ave_3: the average over the mean relative prediction errors of OC3, OC

Nt U.S. Environmental Protection Agency through Science to
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bolded values highlight those variables that are better fit by
the RBF-PLS as compared to the PLS model. The average
mean errors for all the carbon fractions and those for OC3,
OC and TC are also listed ITBF)lG 2 The carbon frqctions [1] D.W. Dockery, C.A. Pope, X.P. Xu, J.D. Spengler, J.H. Ware,
were selected as examples since they have relatively large "~ \ g Fay, B.G. Ferris, F.E. Speizer, N. Engl. J. Med. 329 (1993)
concentrations (especially, OC3, OCand TC) and they arethe  1753.

very important species for air quality studies. For example, [2] J. Cyrys, J. Heinrich, G. Hoek, K. Meliefste, M. Lewne, U. Gehring,
they can assistin the identification/apportionment of gasoline T Bellander, P. Fischer, P. Van Viet, M. Brauer, H.E. Wichmann,
and diesel emission3,24] It can be seen in the results B. Brunekreef, J. Exposure Anal. Environ. Epidemiol. 13 (2003)
for both methods on sample groups1 and 2 that the average 3} |_s. Hughes, J.0. Allen, M.J. Kleeman, R.J. Johnson, G.R. Cass,
mean error of the carbon fractions is approximately 20%, D.S. Gross, E.E. Gard, M.E.&8i, B. Morrical, D.P. Fergenson, T.
and the average mean errors of OC3, OC and TC-d%2%. Dienes, C.A. Noble, D.-Y. Liu, P.J. Silva, K.A. Prather, Environ. Sci.
The measurement uncertainties for the carbon fractions are " )T(e;hng'(-m% l(\lli/lggl):::eore.PK Honke. DT Suese. KA. Prather 13
typically Iargerthan. 1.5%25]' Th‘??’ both PLS and RBF_P,LS Schauer, gR Cass, Ar'lal. Chim?Ac:ta 446 (zooi) 329. ’
showed good prediction capability for the carbon fractions. [s; k A prather, T. Nordmeyer, K. Salt, Anal. Chem. 66 (1994)
The prediction errors of group 3 were somewhat larger than 1403.

for the other groups. One of the possible reasons could be [6] D.Y. Liu, R.J. Wenzel, K.A. Prather, J. Geophys. Res. 108 (2003)
the samples selected for group 3 are not as similar to those _ 8426. ,

samples included in the calibration set as those in groups [’} Jl'oRg‘g Whiteaker, K.A.Prather, Atmos. Environ. 37 (2003)
1 and 2. The RBF-PLS shows better predictions than PLS (g] pp. Fergenson, X. Song, Z. Ramadan, J.0. Allen, L.S. Hughes,
suggesting there is some non-linearity in this system. Italso  G.R. Cass, P.K. Hopke, K.A. Prather, Anal. Chem. 73 (2001)
shows the ability of RBF-PLS to deal with the non-linearity. 3535.

In this study, the width for each radial basis in RBF-PLS  [©] Pgigeempe”i”ev J.R. Long, V.G. Gregoriou, Anal. Chem. 63 (1991)
approach was S_et to the same value. It IS_ likely thf’it RBF_- [10] X. Sc;ng, P.K. Hopke, D.P. Fergenson, K.A. Prather, Anal. Chem. 71
PLS could provide more accurate results if the radial basis”™ " (1999) geo.
widths are set individually (i.e., each radial basis determines[11] D.J. Phares, K.P. Rhoads, A.S. Wexler, D.B. Kane, M.V. Johnston,
its individual width according to the space distribution of its Anal. Chem. 73 (2001) 2338.
surrounding samples). A genetic algorithm could be used to[12] G-A. Carpenter, S. Grossberg, D.B. Rosen, Nerual Networks 4 (1991)
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